LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – PHYSICS

SECOND SEMESTER - APRIL 2015

PH 2816 - QUANTUM MECHANICS - I

Date : 21/04/2015 Time : 01:00-04:00 Dept. No.

Max.: 100 Marks

PART – A

Answer **all** the questions.

- 1. Define the terms (i) inner product and (ii) orthonormalisation
- 2. Show that $i\frac{d}{dx}$ is a Hermitian.
- 3. Show that the fundamental commutation relation $[x,p_x] = i\hbar$ remains unchanged under unitary transformation.
- If A', B', C' are related to A,B,C respectively through unitary transformation, show that the commutation relation [A,B] = iC is invariant under unitary transformation.
- 5. Show that <0 | (a a^ta^ta^t) | 0> = 0, where a and a^t are the lowering and raising operators respectively.
- 6. Show that the ground state of the hydrogen atom will not exhibit a first order Stark effect.
- 7. Establish any two properties of Pauli matrices.
- 8. If j_1 = 1 and j_2 = 1/2, what are the allowed values of resultant **J** = **J**₁+ **J**₂
- 9. What is the principle of partial wave analysis?
- 10. Define differential cross section and total cross section for scattering.

PART -B

Answer any **four** questions.

- 11. Show that (i) operators having common set of eigenfunctions commute.(ii) Commuting operators have a common set of eigenfunctions.
- 12. Usingortho normal eigenkets $|s,m_s\rangle$ with s=1/2, obtain S_x , S_y and S_z matrices.
- 13. Obtain the first order correction to energy of an anharmonic oscillator for a perturbation of the form bx⁴.
- 14. Assuming that $\langle j_1 j_2 | j_1 + j_2, j_1 + j_2 \rangle = +1$, show that $\langle j_1, j_2 1 | j_1 + j_2 1, j_1 + j_2 1 \rangle = \sqrt{\left(\frac{j_1}{j_1 + j_2}\right)}$ and $\langle j_1 - 1, j_2 | j_1 + j_2 - 1, j_1 + j_2 - 1 \rangle = -\sqrt{\left(\frac{j_2}{j_1 + j_2}\right)}$
- 15. Establish the commutation relations of J_+ with J^2 , J_z , J_x , J_y .
- 16. Relate the differential scattering cross-section in the laboratory coordinate system with that in the center of mass coordinate system.

(10 x 2 = 20 Marks)

PART - C

Answer any *four* questions.

(4 x 12.5 = 50 Marks)

- 17. Solve graphically the eigenvalue problem of a particle in a square-well potential with finite walls.
- 18. With necessary theory, explain quantum mechanical tunnelling.
- 19. (a) Starting from momentum representation , obtain the form of operator for position coordinate.
 - (b) Starting form coordinate representation, obtain the form of operator for momentum representation.
- 20. Explain the formation of the hydrogen molecule using variational method.
- 21. Obtain the matrix forms for J^2 , J_{z_2} , J_x , J_y , J_+ and J_- , when j=3/2.
- 22. Discuss scattering by a central potential using partial wave analysis. Derive an expression for scattering cross-section and hence prove the optical theorem.
